SBA

45°

SEMINÁRIO BRASILEIRO

DE

ANÁLISE

SEPARATAS

1997

A UNSTABLE WEAK SOLUTION TO A FREE BOUNDARY PROBLEM IN DIFFERENTIAL GEOMETRY

CELSO M. DORIA

ABSTRACT. In this article we prove the existence of a unstable solution of class $L^{1,2}$ to a Free Boundary Problem related to the Harmonic Map Equation defined on a Riemannian Manifold of dimension 2, and which target space is a Riemannian Manifold. The method used relies on the fact that the Minimax principle can be applied to the α -energy functional introduced by Sacks-Uhlenbeck.

1. INTRODUCTION

Let (N,g) be a n-dimensional Riemannian Manifold and $S\subset M$ a closed submanifold of M. Given a Riemannian Manifold (M,γ) of dimension 2, which boundary is non-empty, we may ask if there is a harmonic map $\phi:(M,\gamma)\to (N,g)$ such that $1.1-\phi(\partial M)\subset S$.

1.2 - $\partial_n \phi(w) \perp T_{\phi(w)} S$ for all $w \in \partial M$ ($\partial_n \phi = d\phi.n$ is the derivative in the normal direction to ∂M induced by the orientation on M).

In the case of dim(M)=2 the problem is more approachable since the harmonic map equation has order 2 and in this case the dimension 2 of the domain is exactly the critical dimension for the Sobolev Embeddings.

We are able to prove the existence of an unstable $L^{1,2}$ -solution in Theorem 4.1 using the Minimax Principle applied to the α -energy functional first introduceded by Sacks-Uhlenbeck [2]. A harder problem is to study the C^{∞} regularity of this weak solution. This study will appear in a forthcoming paper; for while we only managed to prove it in the case of $M=D^2$. In the case $N=R^k$ and $M=D^2$, the result was first proved in Struwe [1].

2. BRIEF RIEMANNIAN GEOMETRY

A Riemannian metric γ defined on M allow one to introduce the Covariant derivative concept through the unique Levi-Civita Connexion. It means that given γ , we have a unique linear map $\nabla: \Gamma(TM) \to \Gamma(T^*M \otimes TN)$ satisfying the Leibniz rule $\nabla(f.s) = df \otimes s + f.\nabla s$, for all $f \in C^\infty$ and $s \in \Gamma(TM)$, where TN = tangent bundle of M, T^*M = cotangent bundle of M and $\Gamma(E)$ = space of sections of E, whenever E is a vector bundle. The same construction is done over N.

A differential map $f: M \to N$ defines a section $df \in \Gamma(T^*M \otimes TN)$, where df_x is the derivative of f at $x \in M$. Once the vector bundle $T^*M \otimes TN$ is a Riemannian bundle, we define

Date: 08/04/1997.

¹⁹⁹¹ Mathematics Subject Classification. Global Analysis.

Key words and phrases. Harmonic Maps, Minimax Principle, Riemannian Manifolds. To the Organisers of the 45^oSeminário Brasileiro de Ánalise realised in May/97, Florianópolis - SC, Brazil.